首页> 外文OA文献 >Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning
【2h】

Optimization Methods for Supervised Machine Learning: From Linear Models to Deep Learning

机译:监督机器学习的优化方法:来自线性模型   深度学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The goal of this tutorial is to introduce key models, algorithms, and openquestions related to the use of optimization methods for solving problemsarising in machine learning. It is written with an INFORMS audience in mind,specifically those readers who are familiar with the basics of optimizationalgorithms, but less familiar with machine learning. We begin by deriving aformulation of a supervised learning problem and show how it leads to variousoptimization problems, depending on the context and underlying assumptions. Wethen discuss some of the distinctive features of these optimization problems,focusing on the examples of logistic regression and the training of deep neuralnetworks. The latter half of the tutorial focuses on optimization algorithms,first for convex logistic regression, for which we discuss the use offirst-order methods, the stochastic gradient method, variance reducingstochastic methods, and second-order methods. Finally, we discuss how theseapproaches can be employed to the training of deep neural networks, emphasizingthe difficulties that arise from the complex, nonconvex structure of thesemodels.
机译:本教程的目的是介绍与使用优化方法解决机器学习问题相关的关键模型,算法和开放性问题。它是针对INFORMS读者而写的,特别是那些熟悉优化算法基础知识但不熟悉机器学习的读者。我们首先得出一个监督学习问题的公式,并显示它如何根据上下文和基本假设导致各种优化问题。然后,我们将以逻辑回归和深度神经网络训练为例,讨论这些优化问题的一些鲜明特征。本教程的后半部分重点介绍优化算法,首先是凸逻辑回归,我们将讨论一阶方法,随机梯度方法,方差减少随机方法和二阶方法的使用。最后,我们讨论了如何将这些方法用于深度神经网络的训练,强调了这些模型的复杂,非凸结构所带来的困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号